34 research outputs found

    Survey-based naming conventions for use in OBO Foundry ontology development

    Get PDF
    A wide variety of ontologies relevant to the biological and medical domains are available through the OBO Foundry portal, and their number is growing rapidly. Integration of these ontologies, while requiring considerable effort, is extremely desirable. However, heterogeneities in format and style pose serious obstacles to such integration. In particular, inconsistencies in naming conventions can impair the readability and navigability of ontology class hierarchies, and hinder their alignment and integration. While other sources of diversity are tremendously complex and challenging, agreeing a set of common naming conventions is an achievable goal, particularly if those conventions are based on lessons drawn from pooled practical experience and surveys of community opinion. We summarize a review of existing naming conventions and highlight certain disadvantages with respect to general applicability in the biological domain. We also present the results of a survey carried out to establish which naming conventions are currently employed by OBO Foundry ontologies and to determine what their special requirements regarding the naming of entities might be. Lastly, we propose an initial set of typographic, syntactic and semantic conventions for labelling classes in OBO Foundry ontologies. Adherence to common naming conventions is more than just a matter of aesthetics. Such conventions provide guidance to ontology creators, help developers avoid flaws and inaccuracies when editing, and especially when interlinking, ontologies. Common naming conventions will also assist consumers of ontologies to more readily understand what meanings were intended by the authors of ontologies used in annotating bodies of data

    Survey-based naming conventions for use in OBO Foundry ontology development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A wide variety of ontologies relevant to the biological and medical domains are available through the OBO Foundry portal, and their number is growing rapidly. Integration of these ontologies, while requiring considerable effort, is extremely desirable. However, heterogeneities in format and style pose serious obstacles to such integration. In particular, inconsistencies in naming conventions can impair the readability and navigability of ontology class hierarchies, and hinder their alignment and integration. While other sources of diversity are tremendously complex and challenging, agreeing a set of common naming conventions is an achievable goal, particularly if those conventions are based on lessons drawn from pooled practical experience and surveys of community opinion.</p> <p>Results</p> <p>We summarize a review of existing naming conventions and highlight certain disadvantages with respect to general applicability in the biological domain. We also present the results of a survey carried out to establish which naming conventions are currently employed by OBO Foundry ontologies and to determine what their special requirements regarding the naming of entities might be. Lastly, we propose an initial set of typographic, syntactic and semantic conventions for labelling classes in OBO Foundry ontologies.</p> <p>Conclusion</p> <p>Adherence to common naming conventions is more than just a matter of aesthetics. Such conventions provide guidance to ontology creators, help developers avoid flaws and inaccuracies when editing, and especially when interlinking, ontologies. Common naming conventions will also assist consumers of ontologies to more readily understand what meanings were intended by the authors of ontologies used in annotating bodies of data.</p

    16(th) IHIW: population global distribution of killer immunoglobulin-like receptor (KIR) and ligands.

    No full text
    In the last fifteen years, published reports have described KIR gene-content frequency distributions in more than 120 populations worldwide. However, there have been limited studies examining these data in aggregate to detect overall patterns of variation at regional and global levels. Here, we present a summary of the collection of KIR gene-content data for 105 worldwide populations collected as part of the 15th and 16th International Histocompatibility and Immunogenetics Workshops, and preliminary results for data analysis

    Imidazoacridinone-dependent lysosomal photodestruction: a pharmacological Trojan horse approach to eradicate multidrug-resistant cancers

    Get PDF
    Multidrug resistance (MDR) remains a primary hindrance to curative cancer therapy. Thus, introduction of novel strategies to overcome MDR is of paramount therapeutic significance. Sequestration of chemotherapeutics in lysosomes is an established mechanism of drug resistance. Here, we show that MDR cells display a marked increase in lysosome number. We further demonstrate that imidazoacridinones (IAs), which are cytotoxic fluorochromes, undergo a dramatic compartmentalization in lysosomes because of their hydrophobic weak base nature. We hence developed a novel photoactivation-based pharmacological Trojan horse approach to target and eradicate MDR cancer cells based on photo-rupture of IA-loaded lysosomes and tumor cell lysis via formation of reactive oxygen species. Illumination of IA-loaded cells resulted in lysosomal photodestruction and restoration of parental cell drug sensitivity. Lysosomal photodestruction of MDR cells overexpressing the key MDR efflux transporters ABCG2, ABCB1 or ABCC1 resulted in 10- to 52-fold lower IC(50) values of various IAs, thereby restoring parental cell sensitivity. Finally, in vivo application of this photodynamic therapy strategy after i.v. injection of IAs in human ovarian tumor xenografts in the chorioallantoic membrane model revealed selective destruction of tumors and their associated vasculature. These findings identify lysosomal sequestration of IAs as an Achilles heel of MDR cells that can be harnessed to eradicate MDR tumor cells via lysosomal photodestruction

    Cellular uptake, cytotoxicity and DNA-binding studies of the novel imidazoacridinone antineoplastic agent C1311

    Get PDF
    C1311 is a novel therapeutic agent with potent activity against experimental colorectal cancer that has been selected for entry into clinical trial. The compound has previously been shown to have DNA-binding properties and to inhibit the catalytic activity of topoisomerase II. In this study, cellular uptake and mechanisms by which C1311 interacts with DNA and exerts cytotoxic effects in intact colon carcinoma cells were investigated. The HT29 colon cancer cell line was chosen to follow cellular distribution of C1311 over a time course of 24 h at drug concentrations that just inhibited cell proliferation by 50% or 100%. Nuclear uptake of C1311 and co-localization with lysosomal or mitochondrial dyes was examined by fluorescence microscopy and effects on these cellular compartments were determined by measurement of acid phosphatase levels, rhodamine 123 release or DNA-binding behaviour. The strength and mode of DNA binding was established by thermal melting stabilization, direct titration and viscometric studies of host duplex length. The onset of apoptosis was followed using a TUNEL assay and DNA-fragmentation to determine a causal relationship of cell death. Growth inhibition of HT29 cells by C1311 was concomitant with rapid drug accumulation in nuclei and in this context we showed that the compound binds to duplex DNA by intercalation, with likely A/T sequence-preferential binding. Drug uptake was also seen in lysosomes, leading to lysosomal rupture and a marked increase of acid phosphatase activity 8 h after exposure to C1311 concentrations that effect total growth inhibition. Moreover, at these concentrations lysosomal swelling and breakdown preceded apoptosis, which was not evident up to 24 h after exposure to drug. Thus, the lysosomotropic effect of C1311 appears to be a novel feature of this anticancer agent. As it is unlikely that C1311-induced DNA damage alone would be sufficient for cytotoxic activity, lysosomal rupture may be a critical component for therapeutic efficacy. © 1999 Cancer Research Campaig

    Herbivory by a Phloem-Feeding Insect Inhibits Floral Volatile Production

    Get PDF
    There is extensive knowledge on the effects of insect herbivory on volatile emission from vegetative tissue, but little is known about its impact on floral volatiles. We show that herbivory by phloem-feeding aphids inhibits floral volatile emission in white mustard Sinapis alba measured by gas chromatographic analysis of headspace volatiles. The effect of the Brassica specialist aphid Lipaphis erysimi was stronger than the generalist aphid Myzus persicae and feeding by chewing larvae of the moth Plutella xylostella caused no reduction in floral volatile emission. Field observations showed no effect of L. erysimi-mediated floral volatile emission on the total number of flower visits by pollinators. Olfactory bioassays suggested that although two aphid natural enemies could detect aphid inhibition of floral volatiles, their olfactory orientation to infested plants was not disrupted. This is the first demonstration that phloem-feeding herbivory can affect floral volatile emission, and that the outcome of interaction between herbivory and floral chemistry may differ depending on the herbivore's feeding mode and degree of specialisation. The findings provide new insights into interactions between insect herbivores and plant chemistry

    The ASH1 HOMOLOG 2 (ASHH2) Histone H3 Methyltransferase Is Required for Ovule and Anther Development in Arabidopsis

    Get PDF
    BACKGROUND:SET-domain proteins are histone lysine (K) methyltransferases (HMTase) implicated in defining transcriptionally permissive or repressive chromatin. The Arabidopsis ASH1 HOMOLOG 2 (ASHH2) protein (also called SDG8, EFS and CCR1) has been suggested to methylate H3K4 and/or H3K36 and is similar to Drosophila ASH1, a positive maintainer of gene expression, and yeast Set2, a H3K36 HMTase. Mutation of the ASHH2 gene has pleiotropic developmental effects. Here we focus on the role of ASHH2 in plant reproduction. METHODOLOGY/PRINCIPAL FINDINGS:A slightly reduced transmission of the ashh2 allele in reciprocal crosses implied involvement in gametogenesis or gamete function. However, the main requirement of ASHH2 is sporophytic. On the female side, close to 80% of mature ovules lack embryo sac. On the male side, anthers frequently develop without pollen sacs or with specific defects in the tapetum layer, resulting in reduction in the number of functional pollen per anther by up to approximately 90%. In consistence with the phenotypic findings, an ASHH2 promoter-reporter gene was expressed at the site of megaspore mother cell formation as well as tapetum layers and pollen. ashh2 mutations also result in homeotic changes in floral organ identity. Transcriptional profiling identified more than 300 up-regulated and 600 down-regulated genes in ashh2 mutant inflorescences, whereof the latter included genes involved in determination of floral organ identity, embryo sac and anther/pollen development. This was confirmed by real-time PCR. In the chromatin of such genes (AP1, AtDMC1 and MYB99) we observed a reduction of H3K36 trimethylation (me3), but not H3K4me3 or H3K36me2. CONCLUSIONS/SIGNIFICANCE:The severe distortion of reproductive organ development in ashh2 mutants, argues that ASHH2 is required for the correct expression of genes essential to reproductive development. The reduction in the ashh2 mutant of H3K36me3 on down-regulated genes relevant to the observed defects, implicates ASHH2 in regulation of gene expression via H3K36 trimethylation in chromatin of Arabidopsis inflorescences

    Local therapy of cancer with free IL-2

    Get PDF
    This is a position paper about the therapeutic effects of locally applied free IL-2 in the treatment of cancer. Local therapy: IL-2 therapy of cancer was originally introduced as a systemic therapy. This therapy led to about 20% objective responses. Systemic therapy however was very toxic due to the vascular leakage syndrome. Nevertheless, this treatment was a break-through in cancer immunotherapy and stimulated some interesting questions: Supposing that the mechanism of IL-2 treatment is both proliferation and tumoricidal activity of the tumor infiltrating cells, then locally applied IL-2 should result in a much higher local IL-2 concentration than systemic IL-2 application. Consequently a greater beneficial effect could be expected after local IL-2 application (peritumoral = juxtatumoral, intratumoral, intra-arterial, intracavitary, or intratracheal = inhalation). Free IL-2: Many groups have tried to prepare a more effective IL-2 formulation than free IL-2. Examples are slow release systems, insertion of the IL-2 gene into a tumor cell causing prolonged IL-2 release. However, logistically free IL-2 is much easier to apply; hence we concentrated in this review and in most of our experiments on the use of free IL-2. Local therapy with free IL-2 may be effective against transplanted tumors in experimental animals, and against various spontaneous carcinomas, sarcomas, and melanoma in veterinary and human cancer patients. It may induce rejection of very large, metastasized tumor loads, for instance advanced clinical tumors. The effects of even a single IL-2 application may be impressive. Not each tumor or tumor type is sensitive to local IL-2 application. For instance transplanted EL4 lymphoma or TLX9 lymphoma were not sensitive in our hands. Also the extent of sensitivity differs: In Bovine Ocular Squamous Cell Carcinoma (BOSCC) often a complete regression is obtained, whereas with the Bovine Vulval Papilloma and Carcinoma Complex (BVPCC) mainly stable disease is attained. Analysis of the results of local IL-2 therapy in 288 cases of cancer in human patients shows that there were 27% Complete Regressions (CR), 23% Partial Regressions (PR), 18% Stable Disease (SD), and 32% Progressive Disease (PD). In all tumors analyzed, local IL-2 therapy was more effective than systemic IL-2 treatment. Intratumoral IL-2 applications are more effective than peritumoral application or application at a distant site. Tumor regression induced by intratumoral IL-2 application may be a fast process (requiring about a week) in the case of a highly vascular tumor since IL-2 induces vascular leakage/edema and consequently massive tumor necrosis. The latter then stimulates an immune response. In less vascular tumors or less vascular tumor sites, regression may require 9–20 months; this regression is mainly caused by a cytotoxic leukocyte reaction. Hence the disadvantageous vascular leakage syndrome complicating systemic treatment is however advantageous in local treatment, since local edema may initiate tumor necrosis. Thus the therapeutic effect of local IL-2 treatment is not primarily based on tumor immunity, but tumor immunity seems to be useful as a secondary component of the IL-2 induced local processes. If local IL-2 is combined with surgery, radiotherapy or local chemotherapy the therapeutic effect is usually greater than with either therapy alone. Hence local free IL-2 application can be recommended as an addition to standard treatment protocols. Local treatment with free IL-2 is straightforward and can readily be applied even during surgical interventions. Local IL-2 treatment is usually without serious side effects and besides minor complaints it is generally well supported. Only small quantities of IL-2 are required. Hence the therapy is relatively cheap. A single IL-2 application of 4.5 million U IL-2 costs about 70 Euros. Thus combined local treatment may offer an alternative in those circumstances when more expensive forms of treatment are not available, for instance in resource poor countries
    corecore